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Circulating Factors that Promote Brain Health during Aging
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With the increase in lifespan, aging-associated neurodegenerative diseases and stroke have become a primary threat 
to human health. However, therapeutic options for aging-induced neurological disorders are still limited, which places 
economic and psychological burdens on society and families. Aging is the most fundamental and unadjustable risk factor for 
neurodegenerative diseases and stroke. Accumulating evidence has shown that circulating factors in young blood promotes 
brain health during aging, casting new light on finding novel therapeutic approaches for the treatment of stroke and 
neurodegenerative diseases. Here, we review the current studies on systematic circulation and brain aging, neurodegenerative 
diseases, and stroke, summarizing the current knowledge on how circulating factors mediate brain function during health and 
disease conditions, and discuss the limitation and future hopes of circulating factors from bench to bed translation.
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Introduction 
With the increase in lifespan around the world, aging-induced 
neurodegenerative diseases, including Alzheimer's disease (AD), 
Parkinson’s disease (PD), and stroke have become a significant 
threat to human health (Katan and Luft, 2018; Association, 
2022). Aging is the most prominent and unadjustable risk factor 
for AD, PD, and stroke (Reeve et al., 2014; Yousufuddin and 
Young, 2019; Association, 2022). As a major part of the central 
nervous system (CNS), the brain modulates body functions. It is 
separated from peripheral blood circulation by the blood-brain 
barrier (BBB). The BBB forms a strict screen, protecting the 
brain from xenobiotics, microorganisms, and circulating toxic 
agents, and maintains brain parenchyma homeostasis and brain 
function (Abbott et al., 2010; Sifat et al., 2017). Accumulating 
evidence has revealed that plasma proteins circulating in 
blood changes with age, and the plasma composition of the 
young systemic circulation was very different from that of 
old systemic circulation in humans and rodents (Conboy 
et al., 2005; Villeda and Wyss-Coray, 2013; Drew, 2017). 
Furthermore, studies showed that plasma proteins could pass 

through the BBB and participate in brain function modulation. 
BBB permeability increases with age (Montagne et al., 2015; 
Yang et al., 2020), indicating that the interaction between the 
brain and systematic circulation is much more profound than 
once thought. A series of studies showed that young systemic 
factors had positive effects on the function of the aging brain, 
while circulating factors from aging individuals had negative 
effects on the young brain (Villeda et al., 2011; Villeda and 
Wyss-Coray, 2013). Parabiosis or plasma infusion, exercise, 
and caloric restriction improved brain function by changing the 
components of the systemic circulation in preclinical studies, 
providing new hope for finding a cure against aging-induced 
neurodegenerative diseases and stroke. However, more studies 
are needed to translate the significant treatment effects observed 
in preclinical studies into the clinical setting.
    In this review, we summarize current research on the 
therapeutic effects of young blood and circulating factors on 
age-related cerebral diseases. We also discuss controversies, 
limitations, and future perspectives. We hope that this review 
is useful for developing a better understanding of the role of 
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young blood and its circulating factors with respect to age-
related neurodegenerative diseases and stroke.

The interaction between the brain and systematic 
circulation
Circulating blood integrates signals from all organs and provides 
means for communication between peripheral tissues and the 
brain. Most parts of the brain, except the circumventricular 
organs (CVO) including the midline of the ventricular system, 
posterior pituitary gland, pineal gland, the median eminence 
of the hypothalamus, and area postrema, are separated from 
blood circulation by the BBB, which is characterized by low 
permeability and high selectivity (Broadwell et al., 1983; Abbott 
et al., 2010). Since the 1900s, scientists believed that only lipid-
soluble small molecules and gas could cross the BBB, and 
most large molecules could not cross the BBB, which included 
antigens, antibodies, and contents of the plasma (Saunders et al., 
2014). Currently we know that there are multiple mechanisms 
that govern large molecule transportation through the BBB, 
including passive diffusion, active efflux paracellular diffusional 
pathways, carrier-mediated transports, and receptor-mediated 
transcytosis (Kadry et al., 2020). Functionally, the brain not 
only integrates sensory signals from external environments and 
directs motor responses, but also responds to changes in other 
organs of the body by interacting with systematic circulation, 
including regulation of growth, metabolism, reproduction, 
and lifespan (Libert and Pletcher, 2007; Jeong et al., 2012; 
Alcedo et al., 2013; Zhang et al., 2013). Recently, Yang et al. 
(2020) found that plasma proteins readily permeate the healthy 
brain parenchyma, with transport maintained by BBB-specific 
transcriptional programs. Unlike immunoglobulin G antibodies, 
plasma protein uptake decreased in the aged brain, caused by 
an age-related change in ligand-specific receptor-mediated 
transportation to nonspecific caveolar transcytosis (Yang et al., 
2020). High-resolution magnetic resonance imaging analysis of 
regional BBB permeability in the living human brain showed 
age-dependent BBB breakdown in the hippocampus, a critical 
region for learning and memory, worsens with mild cognitive 
impairment and correlates with injury to pericytes (Montagne 
et al., 2015). This age-related change occurs along with a 
specific loss of pericyte coverage (Montagne et al., 2015; 
Yang et al., 2020). Those findings confirmed that the brain not 
only modulated the functions of the body and distant organs 
by secreting hormones into blood circulation, but also was 
affected by changes in blood circulation that occurred with 
aging and peripheral inflammations. Parabiosis provides a tool 
to investigate the effects of blood and plasma-derived factors on 
brain aging and aging-associated neurological diseases. 
     Aging is a systematic event that gradually leads to a 
decline in function and regeneration capacity of the major 
body systems. The characteristics of the aging brain such as 
decreased neuro-regeneration, altered vasculature, increased 
neuroinflammation, and impairments in synaptic plasticity lead 
to neurological dysfunction (Wyss-Coray, 2016). Historically, 
there have been many attempts to use blood to restore subjects' 
youth and health (Myhre, 1990; Learoyd, 2012). Parabiosis, 
first introduced by Paul Bert in 1864, is a technique that 
connects the blood circulation of two animals by a joint body 
to explore the effects of circulating blood on the organs of the 
two animals (Conboy et al., 2013). Heterochronic parabiosis 
studies found that young blood circulation expands the lifespan 
of aged mice and promotes stem cell regeneration in the heart, 
muscle, liver, and brain (Conboy et al., 2005). Villeda et al. 
(2014) found that exposure of aged mice to young blood 
circulation by heterochronic parabiosis reverses the effects of 
aging on the brain of the older animal at molecular, structural, 
functional, and cognitive levels. In contrast, exposure to old 
blood or old blood-derived chemokines C-C Motif Chemokine 

Ligand 11 (CCL11) impaired the cognitive function of young 
mice by decreasing synaptic plasticity (Villeda et al., 2011). 
In heterochronic blood exchange, aged-mice blood induced 
cell and tissue senescence in young animals after one single 
exchange, and this induction of senescence was abolished if 
old animals were treated with senolytic drugs before blood 
exchange (Jeon et al., 2022). Another study found that young 
blood induced vascular remodeling and increased neurogenesis 
in aged-mice brain (Katsimpardi et al., 2014). They also showed 
that growth differentiation factor 11 (GDF11) alone had the 
same effect as young blood on the aged brain (Katsimpardi et 
al., 2014). Human cord-blood plasma or treatment with cord-
blood-derived factor tissue inhibitor of metalloproteinases 2 
(TIMP2) was shown to rejuvenate the aged hippocampus and 
improve cognitive function in aging mice (Castellano et al., 
2017). Kuroda et al. (2017) showed that peripheral blood-
derived circulating fibroblast growth factor 21 (FGF21) 
promotes the proliferation and remyelination of oligodendrocyte 
precursor cells (OPCs), emphasizing the novel concept – the 
peripheral milieu controls CNS regeneration (Kuroda et al., 
2017). A recent study by Gan and Südhof (2019) revealed 
that thrombospondin-4 (THBS4) and SPARC-like protein 1 
(SPARCL1) in young blood could directly promote synaptic 
function in aged mice. Another study reported that up-regulation 
of vascular adhesion molecule 1 (VCAM1) in the plasma of 
aged humans and mice accelerated brain aging, and systemic 
administration of anti-VCAM1 antibody or deletion of the 
Vcam1 gene in brain endothelial cells (BECs) rescued cognitive 
functions in aged mice and reversed brain aging characteristics, 
including decreased microglial reactivity and lower neural 
precursor cell activity (Yousef et al., 2019). Using tools such as 
parabiosis to search for circulating rejuvenation factors remains 
an area that attracts scientists’ immense interest. 
     Besides the young blood and young blood factors, exercise 
has shown to be another means to promote neurogenesis and 
hippocampal function of the aging brain by increasing cerebral 
blood flow and changing the components of the peripheral 
circulation. A meta-analysis study found that physical exercise 
invariably resulted in structural and functional changes in the 
ippocampus/parahippocampus area and a cluster within the 
cerebellum, indicating that exercise was crucially relevant 
to preserve cognitive functions in elder adults (Ji et al., 
2021). In young adults, exercise was reported to increase 
brain-derived neurotrophic factor (BDNF) concentration in 
peripheral blood circulation and enhance BDNF release from 
the brain (Zoladz et al., 2008; Seifert et al., 2010). Several 
studies showed that exercise could promote neuroplasticity and 
decrease neuroinflammation by modulating the composition 
of peripheral blood circulating factors (Gleeson et al., 2011; 
Spielman et al., 2016; Lin et al., 2018). Horowitz et al. 
(2020) found that exercise increased plasma concentrations of 
glycosylphosphatidylinositol (GPI)-specific phospholipase D1 
(GPLD1), a liver-derived GPI-degrading enzyme, and improved 
cognitive function in aged mice by altering signaling cascades 
after GPI-anchored substrate cleavage. Their study also found 
that the peripheral concentration of GPLD1 increased in active 
and healthy elderly humans (Horowitz et al., 2020). Meanwhile, 
physical exercise was shown to reduce the expression of 
neuroinflammatory genes and improve cognitive function by 
increasing complement cascade inhibitors such as clusterin 
(CLU) in the circulating blood of the animal model and of 
patients with cognitive impairment (De Miguel et al., 2021). 
Collectively, the above evidence indicated that young blood 
plasma or young blood factors have positive effects on age-
related brain function (Table 1). Understanding its underlying 
mechanisms could provide novel approaches and ideas to 
combat age-related brain degenerative diseases and stroke.
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Changes in systemic environment of age-related brain 
diseases
Neurodegenerative diseases
With the growth of the aged population, neurodegenerative 
diseases become more prevalent and lack an effective cure, 
bringing enormous economic and psychological burden to the 
patient's families and society (Reeve et al., 2014; Association, 
2022). AD and PD are the most common neurodegenerative 
diseases. Studies have shown that aging blood circulation and 
aging blood factors induce BBB disruption in the hippocampus, 
reduce neurogenesis, increase microglial reactivity, and affect 
cognitive function in rodents and humans (Montagne et al., 
2015; Yousef et al., 2019; Yang et al., 2020). Exposure to young 

blood or young blood factors alleviated cognitive deficits of 
aging-brain by improving vascular function and by promoting 
synaptic plasticity and hippocampal gene expression networks 
related to learning and memory (Zhang et al., 2019). The role 
of blood circulation in cognitive function of the aging brain is 
gaining increasing interest as new therapeutic approaches to 
neurodegenerative diseases. 

Alzheimer’s disease 
AD is the most common neurodegenerative disease with a 
particular onset and course of cognitive and functional decline 
associated with age and ultimately results in death (Association, 
2022). In a preclinical study, heterochronic parabiosis or young 
plasma infusion improved neuron cell function at the molecular 
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level and cognitive function of elderly AD mice, but did not 
show a reduction in the amyloid beta (Aβ) burden (Middeldorp 
et al., 2016). Morales et al. (2020) found that infusion of 
whole blood or plasma from elderly animals with extensive Aβ 
deposition in their brains or intravenous injection of purified 
Aβ developed significantly higher levels of brain amyloidosis 
and neuroinflammation in young mice, indicating the role of 
peripheral amyloid-dependent or -independent factors associated 
with AD development. Another study presented that systemic 
administration of young plasma reduced neuroinflammation 
and the deposition of Aβ, decreased tau hyperphosphorylation 
level, and reversed the cognitive impairment in aged 3×Tg-AD 
mice (Zhao et al., 2020). Kim et al. (2020) found that young 
plasma infusion showed partial trend-level improvements 
in hippocampal glycogen synthase kinase beta (GSKβ)/Tau 
expression, neuroplasticity, and mitochondrial function in AD 
mice. Infusion of the plasma from exercised mice showed 
general improvement accompanied by positive effects on 
cognitive function by increasing blood BDNF concentration 
(Kim et al., 2020). In a mouse model of cerebral amyloid 
angiopathy (CAA), a major pathological feature of AD, young 
plasma improved cognition, learning and memory impairment, 
and anxiety, while preventing neuronal apoptosis, enhancing 
neurogenesis, and reducting cerebral hemorrhage in CAA mice 
(Li et al., 2021).  However, Aβ in the cortex and hippocampus 
was not reduced (Li et al., 2021).
     Studies have reported that circulating factors, including 
growth differentiation factor 11 (GDF11) and C-C Motif 
chemokine Ligand 11 (CCL11), could be involved in aging-
associated neurodegenerative disease progression. Daily 
intravenous injection of young-blood circulating factor GDF11 
decreased neuroinflammation, increased vascularization, and 
improved cognitive function of AD mice (Zhang et al., 2018), 
casting light on anti-neurodegenerative drug development. 
However, studies also found that age-induced cognitive-
impaired adults showed no difference in circulating GDF11 
level from healthy adults (Yang et al., 2017). The controversial 
effects of circulating GDF11 on brain vasculature and 
cognitive function could be a result of age-related changes 
in BBB permeability. Circulating CCL11, a member of 
the eotaxin family that activates C-C chemokine receptor 
3 (CCR3), has also been reported to increase with age in 
plasma and cerebrospinal fluid (CSF) of mice and humans 
(Villeda et al., 2011; Hoefer et al., 2017; Huber et al., 2018). 
Circulating CCL11 plays a crucial role in cerebral physiological 
function (Mendelsohn and Larrick, 2011). CCL11 induced 
neuroinflammation, oxidative stress, tau phosphorylation, and 
the production of β-amyloid, indicating it is a potential risk 
factor for AD (Zhu et al., 2017; Huber et al., 2018). However, 
it is still unclear whether CCL11 is increased in the brain of 
AD patients (Cherry et al., 2017). Similar to GDF11, there were 
controversial results about the function of CCL11 in the CNS. 
Recombinant CCL11 promotes the migration and proliferation 
of mouse neural progenitor cells (Wang et al., 2017). 
Infection, especially Gram-negative bacteria-induced infection, 
correlated with the early development of AD by increasing 
lipopolysaccharide (LPS) concentration in the blood of humans 
and mice. Regular usage of anti-inflammatory drugs was 
associated with a reduction in AD development (Vlad et al., 
2008; Zhan et al., 2018). LPS in the blood of AD patients is 
three-fold higher than that in the control group (Zhao et al., 
2017). Increased blood LPS can disrupt BBB and enter the 
brain parenchyma, inducing myelin injury and myelin basic 
protein degradation, and neuroinflammation, ultimately leading 
to cognitive impairment (Zhan et al., 2018). A series of data 
showed that LPS could act on leukocyte and microglial toll-
like receptor (TLR)4- cluster of differentiation 14 (CD14)/
TLR2 receptors, increase nuclear factor kappa B -mediated 

cytokines, including interleukin (IL) 1, IL6, and tumor necrosis 
factor (TNF) that lead to upregulated Aβ levels, damagde 
oligodendrocytes, and white matter injury in AD brain (Ikeda et 
al., 1999; Rossol et al., 2011; Enkhbaatar et al., 2015; Kayagaki 
et al., 2015). Taken together, the blood LPS, gram-negative 
bacteria, and inflammation may provide new insights for AD 
prevention and treatment. 
     Clinical and preclinical studies have shown that exercise 
improves memory deficits by improving hippocampal 
neurogenesis and plasticity and changing molecular biomarkers 
and brain volumes in dementia (Liu et al., 2020; Castells-
Sánchez et al., 2022; El-Domiaty et al., 2022). Studies have 
reported that exercise increases the peripheral concentration of 
growth factors, including BDNF, myokine cathepsin B (CTSB), 
and klotho, which are associated with improved cognition 
and synaptic function, decreased β-amyloid, and resilience 
to neurodegenerative diseases (Duzel et al., 2016; Gaitán et 
al., 2021). Aerobic exercise training induced neurogenesis by 
increasing BDNF, reducing CCL11 and oxidative stress in blood 
circulation (Cho and Roh, 2016). Exercise-induced plasma 
changes in BDNF and increased plasma CTSB concentration 
were positively associated with cognitive changes in middle-
aged adults who are at risk for dementia (Gaitán et al., 2021). 

Parkinson’s disease 
Parkinson's disease (PD) is the second most common 
neurodegenerative disease that damages the motor and 
cognitive function of patients (Tolosa et al., 2021). PD patients 
showed elevated plasma levels of chemokine concentration, 
including CCL2/MCP-1, CCL11/eotaxin, CCL24/eotaxin-2, 
and CXCL10/IP-10 (Rocha et al., 2014). Neutralization 
of circulating CCL11 suppressed neuroinflammation, 
prevented loss of dopaminergic neurons, normalized striatal 
neurotransmitters, and improved motor functions in PD 
mice (Chandra et al., 2016). Studies have shown that blood 
circulation may be the transporter for α-synuclein, which is 
strongly associated with dopaminergic neuron damage, to the 
brain in PD. Four-month heterochronic parabiosis of wild-type 
mice and transgenic mice that overexpressed human α-synuclein 
with a PD-associated mutation, showed a significant increase 
of α-synuclein filament but not α-synuclein in the substantia 
nigra of wildtype mice (Ma et al., 2021). In contrast, Lewy 
Body injected mice in the parabiosis model showed decreased 
dopamine neurons and increased immunoreactivity of nigral 
phosphorylated α-α-synuclein immunoreactivity, while 
its partner mice did not show a lesion or change in S129 
phosphorylated-α-α-synuclein levels, indicating that the disease 
was not 'transmitted' through the bloodstream (Yu et al., 2021). 
Clinical studies showed that young plasma infusions were safe, 
feasible, and well-tolerated, and they also decreased peripheral 
inflammation after four weeks of treatment in moderate-stage 
PD without serious adverse effects (Parker et al., 2020).

Stroke 
The World Stroke Organization reported that stroke remains the 
third leading cause of death and disability in the world (Feigin 
et al., 2022), with 87% of strokes being ischemic (Benjamin 
et al., 2018). Aging is the most potent unadjustable risk factor 
for incident stroke, which increases dramatically with aging 
after the age of 55  (Yousufuddin and Young, 2019). As a part 
of the whole body system, disturbances of focal brain function 
caused by stroke could trigger the activation of the systemic 
immune response (Offner et al., 2006), stress response (Zi and 
Shuai, 2013), release of macrophages from the spleen (Anrather 
and Iadecola, 2016), release of  bone marrow stem cells from 
bone marrow (Courties et al., 2015), and changes in intestinal 
permeability and microbiota (Crapser et al., 2016; Singh et al., 
2016). These changes could lead to changes in peripheral blood 
and affect the ischemic brain in positive or negative ways. 
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Clinical studies have shown that after 24 hours of ischemic 
stroke, the plasma level of BDNF and nitric oxide-derived 
metabolites in stroke patients reduced, which was associated 
with developing depression and a decreased cognition, emotion, 
and neurological status (Lasek-Bal et al., 2015; Casas et al., 
2017). In vivo and in vitro studies showed that the miRNA Let-
7i, miR-124, and miR-210 modulated BDNF expression after 
ischemic stroke (Eyileten et al., 2021), which was perhaps a 
promising therapeutic target for stroke therapy. Meanwhile, 
clinical and experimental studies found that brain-specific 
markers upregulated in blood after ischemic stroke and played 
a detrimental role in stroke prognosis. It has been proven that 
blood glutamate levels increase after acute ischemic stroke due 
to leakage of increased glutamate concentration in the ischemic 
brain. Peritoneal dialysis or bioconjugate glutamate scavenging 
ameliorate ischemic brain insult in rats by decreasing peripheral 
glutamate levels (Hawkins et al., 2006; Teichberg et al., 2009; 
Godino Mdel et al., 2013; Zaghmi et al., 2020). Taken together, 
there was an interaction between the ischemic brain and 
systemic blood circulation, which could play a decisive role in 
stroke outcomes. However, studies on the therapeutic effects of 
healthy blood/plasma therapy on ischemic stroke were limited. 
The main focus was on the anti-neuroinflammatory effects of 
healthy plasma in the acute phase and white matter repair in the 
subacute phase of ischemic stroke. 
     A clinical study found that no significant changes 
in peripheral inflammatory TNF-α, C-reactive protein, 
fibrinogen, and leukocyte during the first 24 hours of stroke 
onset (Masztalewicz et al., 2010). Systemic administration of 
young healthy plasma to elderly animals with ischemic stroke 
decreased infarct volume and neurobehavioral functional 
deficits, but elderly plasma injection to young ischemic stroke 
mice worsened stroke prognosis (Pan et al., 2017). A preclinical 
study showed that the administration of the young blood 
factor GDF11 promoted neurogenesis and angiogenesis, and 
contributed to functional recovery after stroke in mice (Lu et 
al., 2018). The level of insulin-growth factor-1 (IGF-1) in blood 
circulation decreased with age in humans and rodents (Yuan et 
al., 2019). Heterochronic parabiosis and young plasma injection 
ameliorated the results of intracerebral hemorrhage in aged mice 
(Yuan et al., 2019). They also found that IGF-1 administration 
to aged- intracranial hemorrhage (ICH) mice alleviated ICH 
outcomes (Yuan et al., 2019). Elevated peripheral CCL12 
levels in elderly mice aggravate ICH-induced brain injury 
by recruiting macrophages and T cells (Huang et al., 2020). 
Replacing ischemic stroke mouse blood with healthy young 
mouse blood demonstrated that healthy blood substitution 
could improve ischemic stroke outcomes of mice by decreasing 
neuroinflammation and matrix metallopeptidase-9 activity (Ren 
et al., 2020). Significant changes in the expression level of IL-
4, IL-6, and IL-10 in stroke patients were observed, but no 
significant changes over time were found in the IL-2, TNF-α, 
and interferon-γ expression levels (Deng et al., 2021). Our 
previous study also demonstrated that intravenous injection of 
healthy donor plasma to ischemic mice protected the integrity of 
the tight junction, decreased neuronal cell death, and improved 
neurobehavioral outcomes by increasing fibroblast growth 
factor 21 in blood (Mamtilahun et al., 2021). 

From bench to bed: the limitations and future hopes
In preclinical studies, young blood plasma showed promising 
therapeutic effects on aging and age-related neurodegenerative 
diseases and stroke. However, clinical studies showed no 
significant improvement in the cognitive and neurological 
function of aged patients who received young plasma 
treatment. In addition to the small sample size of these clinical 
studies, there were several other reasons why young plasma 
treatment showed no significant improvement in elderly 

patients' prognosis. First, most of the preclinical studies used 
heterochronic parabiosis to study the effects of young or 
elderly systemic circulation on aging or aging-induced neuro 
disorders. Notably, in heterochronic parabiosis, the two mice 
that were joined together shared not only blood circulations, 
but also elderly or young organs that participate in modulating 
body functions. That means in parabiosis two animals shared 
the systemic environment, organs, and blood circulations, and 
it could not be repeated in clinical studies; rejuvenation of the 
aged brain may be the result of a combined effect of shared 
organs, environment, and blood circulations. Furthermore, 
blood exchanges in the parabiotic animal were relatively slow, 
with a total blood volume that exchanges approximately ten 
times a day (Huff et al., 1950; Harris, 2013). The half-life 
of proteins in the blood circulation is different, and blood or 
plasma infusion may not maintain a significant concentration of 
plasma proteins in the older blood circulation as heterochronic 
parabiosis does. The half-life of proteins could be another 
reason why plasma infusion did not show significant treatment 
effects in clinical trials. Young blood plasma infusion could 
alleviate aging-induced brain disfunction by diluting the 
circulating factors in aging blood. Blood or plasma is cocktail 
of proteins, microRNAs, exosomes, etc. The therapeutic effects 
of parabiosis or blood infusion could be the results of combined 
effect of more than one factor. Hence, the complexity of blood 
or plasma composition and its half-life is also needed to be 
taken into consideration in clinical studies. 
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